Four New Factors of Fermat Numbers

By D. E. Shippee

Using a System 370, Model 158, IBM Computer, I was able to extend the research of R. M. Robinson [1] and others [2] and [3] concerning the exploration of factors of Fermat Numbers. I wrote my own arithmetic routines to operate on a bit string with a length of 1024 bites (1288 -bit BYTES). Thus, I was able to test possible factors which were larger than the $2^{32}-1$ fixed word maximum.

I tested numbers of the form $K \cdot 2^{n}+1$, where $23 \leqslant n \leqslant 100$ and $3 \leqslant K \leqslant$ 29999, K is odd; and $101 \leqslant n \leqslant 256$ and $101 \leqslant K \leqslant 293, K$ is odd. I refound all previously found factors within these ranges, as well as:

$$
\begin{aligned}
697 \cdot 2^{64}+1 & \text { divides } F_{62} \\
7551 \cdot 2^{69}+1 & \text { divides } F_{66} \\
683 \cdot 2^{73}+1 & \text { divides } F_{71} \\
1421 \cdot 2^{93}+1 & \text { divides } F_{91}
\end{aligned}
$$

International Business Machines Corporation
 Box 390

Pough keepsie, New York 12602

[^0]
[^0]: 1. RAPHAEL M. ROBINSON, "A report on primes of the form $K \cdot 2^{n}+1$ and on factors of Fermat numbers," Proc. Amer. Math. Soc., v. 9, 1958, pp. 673-681.
 2. JOHN C. HALLYBURTON, JR. \& JOHN BRILLHART, "Two new factors of Fermat numbers," Math. Comp., v. 29, 1975, pp. 109-112.
 3. G. MATTHEW \& H. C. WILLIAMS, "Some new primes of the form $K \cdot 2^{n}+1$," Math. Comp., v. 31, 1977, pp. 797-798.
